
Contents lists available at ScienceDirect

Clinical Biochemistry

journal homepage: www.elsevier.com/locate/clinbiochem

Fingerstick test quantifying humoral and cellular biomarkers indicative for
M. leprae infection

Paul L.A.M. Corstjensa, Anouk van Hooijb, Elisa M. Tjon Kon Fata, Korshed Alamc,
Loes B. Vrolijkb,d, Sipho Dlaminid, Moises Batista da Silvae, John S. Spencerf, Claudio G. Salgadoe,
Jan Hendrik Richardusg, Colette L.M. van Heesh, Annemieke Gelukb,⁎

a Dept. Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
bDept. of Infectious Diseases, Leiden University Medical Center, The Netherlands
c Rural Health Program, The Leprosy Mission International Bangladesh, Nilphamari, Bangladesh
dDivision of Dermatology, New Groote Schuur Hospital, Cape Town, South Africa
e Laboratório de Dermato-Imunologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Marituba, Pará, Brazil
fDept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, USA
g Dept. of Public Health, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
hDept. of Dermatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.

A R T I C L E I N F O

Keywords:
CRP
Diagnosis
Fingerstick blood
Leprosy
IP-10
PGL-I
Rapid test
UCP-LFA
Upconverting nanoparticles

A B S T R A C T

Objectives: New user-friendly diagnostic tests for detection of individuals infected by Mycobacterium leprae (M.
leprae), the causative pathogen of leprosy, can help guide therapeutic and prophylactic treatment, thus positively
contributing to clinical outcome and reduction of transmission. To facilitate point-of-care testing without the
presence of phlebotomists, the use of fingerstick blood (FSB) rather than whole blood-derived serum is preferred.
This study is a first proof-of-principle validating that previously described rapid serum tests detecting antibodies
and cytokines can also be used with FSB.
Methods: Quantitative detection of previously identified biomarkers for leprosy and M. leprae infection, anti-M.
leprae PGL-I IgM antibodies (αPGL-I), IP-10 and CRP, was performed with lateral flow (LF) strips utilizing lu-
minescent up-converting reporter particles (UCP) and a portable reader generating unbiased read-outs. Precise
amounts of FSB samples were collected using disposable heparinized capillaries. Biomarker levels in paired FSB
and serum samples were determined using UCP-LF test strips for leprosy patients and controls in Bangladesh,
Brazil, South-Africa and the Netherlands.
Results: Correlations between serum and FSB from the same individuals for αPGL-I, CRP and IP-10 were highly
significant (p < .0001) even after FSB samples had been frozen. The αPGL-I FSB test was able to correctly
identify all multibacillary leprosy patients presenting a good quantitative correlation with the bacterial index.
Conclusions: Reader-assisted, quantitative UCP-LF tests for the detection of humoral and cellular biomarkers for
M. leprae infection, are compatible with FSB. This allows near-patient testing for M. leprae infection and im-
munomonitoring of treatment without highly trained staff. On site availability of test-result concedes immediate
initiation of appropriate counselling and treatment. Alternatively, the UCP-LF format allows frozen storage of
FSB samples compatible with deferred testing in central laboratories.

1. Introduction

Leprosy is an infectious disease caused by Mycobacterium leprae (M.
leprae) that is still a significant health threat in low and middle income
countries where it exist in pockets of high endemicity [1,2]. Diagnosis
of leprosy in endemic areas is based on the presence of one of three
cardinal signs: skin patch with loss of sensation, enlarged peripheral

nerves and detection of the causative pathogen Mycobacterium leprae
(M. leprae). The so-called elimination of leprosy as public health pro-
blem (prevalence<1 per 10,000 population) in many previously en-
demic countries has led to integration of leprosy control into the gen-
eral healthcare and a decrease in the number of clinical leprosy experts.
Consequently, late- and misdiagnosis, as evidenced by the considerable
number of leprosy-associated grade 2 disability when diagnosed, has
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become a critical issue [3]. Moreover, the unabated rate of new case
detection indicates that transmission of M. leprae is persistent and that
current measures for prevention and multidrug therapy (MDT) are in-
sufficient [1].

Contact with leprosy patients, particularly multibacillary (MB) pa-
tients who have the highest bacillary load (BI) [4], is a risk factor to
develop leprosy or contract infection [5,6]. Although the vast majority
of M. leprae infected individuals do not develop leprosy, highly infected
individuals without clinical symptoms may form a reservoir of infection
[7]. Immuno-prophylaxis by vaccination or prophylactic drug treat-
ment with single dose rifampicin (SDR) has been demonstrated to be a
successful and safe method to prevent disease in contacts of newly di-
agnosed leprosy patients with a protective effect of 56% reached in the
first two years [8–12]. Thus, although not actually proven to reduce
infection and transmission, it is plausible that decreased incidence is
caused at least in part by reduced transmission as supported as well by
modelling studies [13]. Hence, detection and treatment of these M.
leprae infected individuals without clinical symptoms, is considered
essential to interrupt transmission and can help prevent leprosy [13].

Considering this, it is clearly recognized [14], that accurate, af-
fordable tests are needed to be applied in leprosy control programs, in
particular aiming at non-expert settings to detect asymptomatic M. le-
prae infection or leprosy closer to where patients first seek care.

To identify individuals spreading leprosy bacilli for prophylactic
treatment, M. leprae infection needs to be measured objectively. Levels
of antibodies directed against the M. leprae-specific Phenolic Glycolipid
I (PGL-I) closely correlate with bacterial load and higher risk of de-
veloping leprosy [15–17]. Thus, it would be rationale to focus on highly
seropositive individuals in current post-exposure prophylactic trials
[10,12], especially if a stronger antibiotic regimen is applied [18].
Additionally, since MDT treatment of MB leprosy patients leads to re-
duction of bacillary load [19,20], detection of M. leprae specific anti-
bodies to monitor treatment efficacy, represents an additional appli-
cation for POC (point of care) tests.

Besides determination of the levels of antibodies we recently
showed that additional assessments of cytokines in blood such as IP-10
(interferon-γ induced protein 10), contributed to identification of M.
leprae infection [21,22]. This indicates the value of combining detection
of both cellular-and humoral biomarkers in new diagnostic tests.

Leprosy endemic areas are often short of sophisticated laboratories
stressing the need for low complexity diagnostic tests. Using the lumi-
nescent upconverting reporter particle (UCP) technology combined
with low-cost immune-chromatography (i.e. lateral flow), we have
developed and field-evaluated quantitative lateral-flow assays (LFAs)
suitable for detection of cytokines and anti-M. leprae PGL-I IgM Ab
(αPGL-I) in serum [21,23–25] as an alternative for the more elaborate
and time consuming laboratory-based enzyme linked immunosorbent
assay (ELISA). For detection of the presence of antibodies against M.
leprae, rapid test relying on visual detection of immunogold particles
have been used [15,26–29]. Using UCP-LFA it is also possible to
quantify the amount of any type of biomarker present in biological
samples [30–33], which will allow assessment of differences in bio-
marker levels in time as well as adjustable cut-off values to meet sen-
sitivity and specificity requirements for areas with variable leprosy
endemicity [21,34].

The user-friendly UCP-LFAs do not require sophisticated analytical
laboratory equipment. An inexpensive, lightweight portable reader
provides a full instrument-assisted analyses and thereby avoids operator
bias. Previously developed UCP-LFAs were applied for the analysis of
venous blood and thus required the presence of certified medical staff.
A less invasive approach, not requiring the presence of a phlebotomist,
is the collection of capillary blood using a finger prick. This method is
widely used e.g. by diabetics to check glucose levels [35] and is more
suitable for large scale, POC screening efforts for leprosy.

In this study we have investigated whether levels of targeted anti-
bodies and cellular biomarkers could be detected in fingerstick blood

(FSB) using previously in-house developed UCP-LFA serum assays
[24,25] for αPGL-I and the cytokine IP-10. In addition, we included a
newly developed UCP-LFA for the acute phase protein CRP (C-reactive
protein) [36] which has been described as a sensitive biomarker for
active tuberculosis [37–39] as well as for Crohn's disease [40] (a disease
which shares susceptibility genes with leprosy). The correlation be-
tween FSB and serum was examined in leprosy patients and contacts
from Bangladesh, Brazil, the Netherlands and South Africa.

2. Materials and methods

2.1. Study participants

HIV-negative, treated and untreated leprosy patients and controls
were recruited on a voluntary basis between August 2016 and May
2018 at the Dept. Dermatology, Erasmus MC, University Medical
Center, Rotterdam, The Netherlands; The Dr. Marcello Candia
Reference Unit in Sanitary Dermatology of the State of Pará, Marituba,
Brazil; The Leprosy Mission International Bangladesh (TLMIB) in
Nilphamari, Bangladesh and the Dept. Dermatology; Groote Schuur
Hospital, Cape Town, South Africa (Table 1 and Supplementary Table
S1). In Bangladesh leprosy was diagnosed based on clinical, and bac-
teriological observations. At the other 3 institutes leprosy histology of
biopsies was additionally applied for classification according to Ridley
and Jopling [41]. Bacterial index (BI) was determined routinely for MB
leprosy patients in Bangladesh and Brazil by bacilloscopic analyses of
intradermal smears from the two ear lobes, both elbows and knees, and
from skin and/or nerve biopsy samples [17].

2.2. Ethics

This study was performed according to the Helsinki Declaration.
Ethical approval of the study was obtained from all local ethical boards
in The Netherlands (MEC-2012-589), Bangladesh (BMRC/NREC/
2010–2013/1534), Brazil (Ethical Appreciation Certificate N°
26,765,414.0.0000.0018) and South Africa (HREC REF: 202/2017).
Participants were informed about the study-objectives, the samples and
their right to refuse to take part or withdraw from the study without
consequences for their treatment. Written informed consent was ob-
tained before enrolment. All patients received treatment according to
national guidelines.

Table 1
Study participants.

Test groupa Originb nc

MB or BL/LL Bangladesh 27
PB or TT/BT Bangladesh 15
HC Bangladesh 27
EC Bangladesh 12
MB or BL/LL Brazil 8
PB or TT/BT or I Brazil 4
HC Brazil 4
ODD Brazil 5
MB or BL/LLd South Africa 4
HC South Africa 1
MB or BL/LL Netherlands 3
PB or TT/BT Netherlands 6
ODD Netherlands 1

117

a Confirmed clinical status of the patients. BL: borderline lepromatous le-
prosy; BT: borderline tuberculoid leprosy; EC: endemic control; HC: household
contact; ENL: erythema nodosum leprosum; I:indeterminate leprosy; LL: le-
promatous leprosy; ODD: other dermatological diseases; MB: multibacillary
leprosy; PB: paucibacillary leprosy; TT: tuberculoid leprosy.

b Country of origin of patients and controls.
c Number of samples tested in this group.
d One MB patient was diagnosed with ENL (purple dot in Fig. 1).
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2.3. Synthetic PGL-I

The disaccharide epitope (3,6-di-O-methyl-β-D-glucopyranosyl(1→
4)2,3-di-O-methylrhamnopyranoside) of M. leprae specific native PGL-I
glycolipid was synthesized and coupled to human serum albumin
(synthetic PGL-I; designated ND-O-HSA, approximately 40 dis-
accharides per molecule) [42]. It was obtained through the Biodefense
and Emerging Infections Research Resources Repository (http://www.
beiresources.org/TBVTRMResearchMaterials/tabid/1431/Default.
aspx).

2.4. UCP Conjugates

Lateral flow assays were developed and performed using lumines-
cent up-converting reporter particles (UCP) allowing quantitative de-
tection of the targeted biomarker [43–45]. Sodium yttrium fluoride
upconverting nano materials (200 nm, NaYF4:Yb3+,Er 3+) functiona-
lized with polyacrylic acid were obtained from Intelligent Material
Solutions Inc. (Princeton, New Jersey, USA). UCP conjugates were
prepared with goat anti-human IgM (I0759, Sigma-Aldrich, St. Louis,
Missouri, USA), mouse-anti-IP-10 (BC-50; Diaclone Research, Besancon,
France) or mouse-anti-CRP (CRP135; Labned.com, Amstelveen, Neth-
erlands) at a concentration of 50 μg antibody per mg UCP according to
the method described previously [25].

2.5. Lateral Flow (LF) strips

LF strips were assembled by mounting 10mm glass fiber sample/
conjugate pad (Ahlstrom 8964), 25mm laminated nitrocellulose
membrane (Sartorius UniSart CN95) and 20mm absorbent pad
(Whatman Cellulose 470) on a plastic backing. Sample pad and ab-
sorbent pad each overlap 2.5mm with the nitrocellulose, respectively at
the beginning and the end. All LF strip components were obtained via
Kenosha (Amstelveen, the Netherlands). Using a CAMAG ATS-4 (BCON
Instruments B.V., Sint-Annaland, the Netherlands) the nitrocellulose
was provided with an assay-specific test (T) line and an upstream Flow
Control (FC) line. Ready to use LF strips were stored at ambient tem-
perature in plastic containers with silica dry pad.

For αPGL-I strips the test (T) line comprised of synthetic PGL-I (ND-
O-HSA, see above) and the flow-control (FC) line of rabbit anti-goat IgG
(RαG; G4018, Sigma-Aldrich) at a concentration of 100 and 50 ng per
4mm width, respectively. For IP-10 and CRP LF strips the T line com-
prised mouse-anti-IP-10 mAb (Clone BC-55; Diaclone) or mouse-anti-
CRP mAb (Clone C5; LabNed.com, Amstelveen, the Netherlands) re-
spectively, at a concentration of 200 ng per 4mm width. The FC line
comprised goat-anti-mouse IgG antibody (M8642; Sigma-Aldrich). The
corresponding UCP reporter conjugate was applied to the sample/
conjugate-release pad at a density of 400 ng per 4mm in a buffer
containing 5% (w/v) sucrose, 50mM Tris pH 8.0, 0.6mM Boraat pH 8,
135mM NaCl, 0.5% (w/v) BSA, and 0.25% Tween-20. The pads were
dried 1 h at 37 °C.

2.6. UCP-LFAs

FSB was collected using disposable 20 μl Minivette® collection tubes
(Heparin coated; Sarstedt). The fingerstick sample was directly mixed
with 980 μl (for αPGL-I and CRP) and for IP-10 with 80 μl high salt
finger stick buffer supplemented with 1% (v/v) Triton X-100 (HSFS;
100mM Tris pH 8, 270mM NaCl, 1% (w/v) BSA). The diluted finger-
stick sample (50 μl) was immediately flowed on LF strips. Remaining
material was frozen at −20 °C.

Serum samples from venous blood were analysed using 50 μl of a
1:50 (αPGL-I), 1:500 (CRP) or 1:5 (IP-10) dilution of serum in HSFS. LF
strips were analysed with a portable LF strip reader adapted for the UCP
label (ESEQuant LFR reader, 980 nm excitation and 550 nm emission;
QIAGEN Lake Constance GmbH, Stockach Germany). Results are

displayed as the ratio value between Test and Flow-Control signal based
on relative fluorescence units (RFUs) measured at the respective lines.
For αPGL-I UCP-LFA the Ratio (R) threshold was set at 0.2 according to
our previous studies [23].

2.7. Statistical analysis

Graphpad Prism version 7.00 for Windows (GraphPad Software, San
Diego CA, USA) was used to calculate R2 values for correlations and
perform Mann-Whitney U tests).

3. Results

3.1. αPGL-I UCP-LFA - quantification in FSB and correlation with serum

The correlation between αPGL-I levels measured in paired finger-
stick blood (FSB) and serum was tested with UCP-LFAs in patients with
leprosy, their household contacts, patients with other dermatological
diseases (ODD) and healthy controls in cohorts in Bangladesh, Brazil,
South-Africa and the Netherlands (Table 1 and Supplementary Table
S1). FSB samples were collected using disposable heparinized capil-
laries that allow safe dispensing of precise volumes of whole blood in a
mild lysis buffer. Of 117 locally tested individuals (67 patients; 32
household contacts; 12 endemic controls; 6 ODD) from areas with dif-
ferent levels of leprosy endemicity, 36 patients (Bangladesh: n= 25,
Brazil: n= 6, Netherlands: n= 2, South Africa: n= 3) and 7 household
contacts (Bangladesh) tested (borderline) positive with the αPGL-I UCP-
LFA for FSB in line with their seropositivity levels. Ratio values, the
read-out of the UCP-LFA, obtained with FSB and serum demonstrated
similar levels of αPGL-I in FSB and serum (p < .0001, R2=0.92;
Fig. 1).

The FSB αPGL-I UCP-LFA was analysed on samples collected from
six patients with other dermatological diseases (ODD) such as psoriasis
and bullous pemphigoid (Supplementary Table S1). These ODD patients
were negative in the FSB αPGL-I UCP-LFA (Ratio values were zero; data
not shown). Clinical and histopathological workup of the patient pre-
senting with a leonine facies suggestive of either lepromatous leprosy
(LL) or post kala azar derma leishmaniasis (PKDL) diagnosed this pa-
tient with scleromyxedema.

3.2. αPGL-I UCP-LFA – sensitivity with FSB and correlation with BI in MB
patients

As part of the routine diagnostic procedure for multibacillary (MB)
patients in Bangladesh and Brazil, the bacterial index (BI) was de-
termined for 33 patients using the invasive technique to obtain slit skin
smears (SSS). Eighteen MB patients were BI positive varying form BI
1+ to 6+. BI values correlated well with αPGL-I UCP-LFA ratio values
for FSB performed in the field: all BI positive patients were positive in
the FSB test whereas six of them without detectable acid fast bacilli in
SSS were also positive using this test (Table 2). This indicates that FSB
analysis for αPGL-I not only is more patient-friendly but likely more
sensitive as well to determine infection.

3.3. IP-10 and CRP UCP-LFAs – quantification in FSB and correlation with
serum

In previous studies, additional assessment of serum proteins such as
IP-10 [21,46] and CRP [36,37] contributed significantly to the identi-
fication of mycobacterial infection and detection of leprosy reactions
[24]. Therefore, besides UCP-LFAs for the humoral marker αPGL-I,
UCP-LFAs for these cellular serum biomarkers were also applied to the
FSB sample set of leprosy patients from Bangladesh and the Netherlands
(n= 56). Of note is that most leprosy patients were already receiving
antibiotic treatment or finished treatment at the time that FSB was
collected. As a control cohort 29 Dutch healthy individuals were tested
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(nonendemic controls; NEC). Both CRP and IP-10 could be detected
well in FSB showing significantly higher levels in leprosy patients
compared to controls and with a highly significant (p < .0001) cor-
relation between serum and FSB-values (Fig. 2). Quantitatively, the
correlation between FSB and serum was good for CRP (R2=0.71;
Fig. 2C) and reasonable for IP-10 (R2=0.61; Fig.2D). The latter is in
line with the reported dependency of cytokine levels on the blood
collection method: e.g. for TNFα it was reported that higher levels were
detected in venous blood compared to capillary blood, whereas the
reverse was found for IL-10 [47]. Possible effects of the anticoagulants

[48] were not investigated.
In addition, the in vivo IP-10 concentration is relevantly lower (10

to 100 fold) than generally found for CRP [37,49]. IP-10 FSB assays
were therefore performed with 10-fold higher sample load than assays
for CRP and αPGL-I. This implies a potentially larger influence of the
biological matrix leading to slightly different values in FSB but still with
a highly significant correlation with UCP-LFA values obtained with the
paired serum samples.

3.4. Comparison of fresh FSB vs frozen FSB

The reporter technology applied in the UCP-LFA format is not
hampered by lysis of the erythrocytes (the red colour of heme groups of
hemoglobin) upon dilution of the FSB in assay buffer [43]. This allows
convenient field sampling by collecting FSB and later analysis in a
central laboratory. Stability of the biomarkers in lysed FSB samples,
stored at −20 °C for 2–6months in UCP-LFA buffer, was analysed with
αPGL-I UCP-LFA and CRP UCP-LFA and compared to results obtained
immediately after FSB sampling (fresh). Since the 1:5 diluted FSB
samples were completely used for analysis of fresh samples, IP-10
frozen samples could not be tested. For the markers assessed in this
study, fresh and frozen FSB samples correlated significantly
(p < 0,0001; Fig. 3 with R2 of 0.85 and 0.74, respectively for the
αPGL-I and CRP LFA). Moreover, all αPGL-I positive samples remained
positive after storage at −20 °C using the previously determined cut-off
of 0.2 or higher for Ratio (R) values [23].

4. Discussion

Although leprosy is one of the oldest recorded debilitating diseases
it has remained a health problem in several countries, predominantly in
poor-resourced regions, and imposes a significant social and financial
burden on society in these economically underprivileged areas. New
tools to break the ongoing transmission are required, in particular low-
complexity diagnostic tests for detection ofM. leprae infection and early
diagnosis of leprosy could definitely be game-changers [24,50–52].

Characteristic for leprosy is its unique disease spectrum [41], in
susceptible individuals, with on one hand paucibacillary disease (tu-
berculoid leprosy) accompanied with enhanced serum levels of pro-
inflammatory cytokines and chemokines (IFN-γ, IP-10) and on the other
hand multibacillary disease (lepromatous leprosy) with high M. leprae-
specific antibody titres and increased levels of regulatory cytokines like
IL-10 [41,53,54].

In our research on test development for mycobacterial diseases we
have previously described the use of UCP-LFA to detect antibodies for
M. leprae-specific PGL-I (αPGL-I) as well as cytokines such as IP-10,
CCL4, IL-10 and IFN-γ in serum, plasma, stimulated whole blood
[25,55,56] or pleural fluid [50]. It was demonstrated at various field
sites [25,51] that UCP-LFA allowed quantitative detection of these
biomarkers also indicating the possibility of biomarker monitoring e.g.
to assess drug-efficiency during treatment [24]. The combined detec-
tion of humoral αPGL-I and cellular immune-markers (IP-10, CCL4 and
IL-10) in M. leprae antigen stimulated whole blood allowed significant
distinction between M. leprae infected and non-infected individuals
[21]. Moreover, the inclusion of cellular markers increased the sensi-
tivity of the assay for leprosy by 39% compared to the UCP-LFA based
on antibodies alone.

In the current study we investigated and successfully implemented
the use of FSB in the UCP-LFA rather than analysing serum samples. FSB
is minimally invasive (more patient-friendly) and a trained phleboto-
mist is not required. Additionally to permit full POC use, the applied
NaYF4 UCP were integrated in the sample/conjugate-release omitting
the in previous studies applied pre-flow sample-reporter incubation
step [55]. Hence the here described UCP-LFAs can be performed by
general staff in modest field- or mobile clinics and even in patients'
homes. In fact FSB can be collected anywhere, and upon dilution in

Fig. 1. Correlation between αPGL-I IgM levels in FSB and serum.
Levels of αPGL-I (n=117) determined by UCP-LFA in FSB and serum from
HIV-negative, treated and untreated leprosy patients and controls at clinics in
Bangladesh, Brazil, the Netherlands and South Africa. Results are shown as
Ratio value (R), being relative fluorescence units (RFUs) measured at Test line
divided by the signal measured at the Flow-Control line. R2 is the square of the
Pearson correlation coefficient. Dotted line (R=0.2) indicates the threshold for
positivity applied to serum [23] and FSB assays. Grey area indicates αPGL-I
UCP-LFA negative samples (Ratio values below threshold). αPGL-I positive
individuals are indicated as follows: MB: red dots; PB: black dots; MB/ENL:
purple dots; HHC green dots; none of the EC was seropositive. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Correlation of BI with αPGL-I UCP-LFA in FSB from leprosy patients.

Origina αPGL-Ib BIc Origina αPGL-Ib BIc

Brazil 9.2 6 Brazil 0.1 0
Bdesh 2.3 6 Bdesh 0.1 0
Bdesh 4.8 6 Bdesh 0.1 0
Bdesh 1.6 6 Bdesh 0.3 0
Bdesh 1.4 6 Bdesh 0.2 0
Bdesh 3.4 5 Bdesh 0.7 0
Bdesh 0.9 5 Bdesh 0.1 0
Bdesh 6.1 5 Bdesh 0.6 0
Bdesh 2.0 5 Bdesh 0.1 0
Brazil 6.6 4.5 Bdesh 0.0 0
Bdesh 0.4 4 Bdesh 0.1 0
Brazil 3.6 3.5 Bdesh 0.0 0
Brazil 1.0 3.3 Bdesh 0.1 0
Brazil 0.3 3 Bdesh 0.4 0
Bdesh 1.1 3 Bdesh 0.2 0
Bdesh 1.0 2
Brazil 0.4 1.3
Bdesh 0.4 1

a Country of origin of patients.
b αPGL-I UCP-LFA test results shown as Ratio value. A test is considered

positive for αPGL-I if the Ratio value> 0.2.
c BI (bacterial index; scale from 0 to 6) is determined by the acid fast bacilli

(AFB) staining of the slit-skin smear (SSS) reported as BI WHO (www.who.int/
lep/microbiology/en).
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assay buffer (for lysis of the blood cells) stored for later analysis with
the UCP-LFAs at a different location making the technology accessible
to everyone. The FSB-based UCP-LFA presented in the current study, as
with serum, allows quantitative detection of the biomarkers previously
shown to be associated with M. leprae infection [21,23,25]. Like the
analysis with serum, it holds promise for detection of different pheno-
types of clinical leprosy when multiplexing humoral and cellular im-
mune biomarkers. After testing, LF strips can be stored indefinitely for
reanalysis or as a permanent record [43], the UCP label of this auto-
fluorescence-free reporter technology does not fade [43].

Potential applications of the M. leprae-specific FSB-based UCP-LF
immunodiagnostic tests described in this study are: i) the identification
of M. leprae infection and bacterial load (by way of αPGL-I, CRP and IP-
10 levels [21,34]) to guide who needs post-exposure prophylactic
treatment [57]; ii) the assistance in classification of leprosy in field
situations, mostly by αPGL-I levels but since IP-10 levels are increased
in MB leprosy [21] measurements of IP-10 in FSB allow for increased
sensitivity of the test for detection of leprosy, particularly in popula-
tions with low seropositivity for αPGL-I such as Bangladesh; iii) mon-
itoring treatment efficacy [24] by reduction of αPGL-I; and iv) early
detection of type 1 leprosy reactions by detecting IP-10 increases
[24,58,59]. Moreover, UCP-LFAs may also be applied for differential
diagnosis, particularly in endemic areas where other diagnostic aids
such as histopathology may not be available. A clinical diagnosis which
includes lepromatous leprosy (such as in the patient with leonine facies)
with a negative UCP-LF should prompt further investigations. Lastly,
the possibility to use frozen FSB samples can be very useful within
evaluation studies including samples from different field sites. In large
population screening efforts this will facilitate more convenient as-
sessment of biomarkers in e.g. post exposure prophylactic (PEP) and
vaccine trials as highly trained staff is not needed for the FSB sample
collection.

In conclusion: Previously developed UCP-LFAs for detection of hu-
moral (αPGL-I) and cellular markers (IP-10 and CRP) in serum were
successfully applied to FSB. The less invasive and user-friendly UCP-LF
FSB approach can be utilised to improve early diagnosis of leprosy.
Implementation of specific POC diagnostic tests in general healthcare
settings has the potential to help reduce disability and eventually social
stigma and discrimination, leading to a significant improvement of the
quality of life of leprosy patients, reduce medical costs associated with
leprosy care and as such contribute to sustainability of healthcare.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.clinbiochem.2019.01.007.
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